Check out these new proceedings volumes from the TMS2012 Annual Meeting, available from publisher John Wiley & Sons:

- 3rd International Symposium on High Temperature Metallurgical Processing
- CFD Modeling and Simulation in Materials Processing
- Characterization of Minerals, Metals, and Materials
- Electrometallurgy 2012
- Energy Technology 2012: CO2 Management and Other Technologies
- EPD Congress 2012
- International Smelting Technology Symposium (Incorporating the 6th Advances in Sulfide Smelting Symposium)
- Light Metals 2012
- Magnesium Technology 2012
- Supplemental Proceedings: Volume 1: Materials Processing and Interfaces
- T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization

To purchase any of these books, please visit www.wiley.com.

TMS members should visit www.tms.org to learn how to get discounts on these or other books through Wiley.
TABLE OF CONTENTS
Magnesium Technology 2012

Preface ... xiii
About the Editor ... xv
About the Organizers ... xvii
Session Chairs .. xix
Reviewer Pool ... xxi

Magnesium Technology 2012

Plenary Session

Magnesium Alloy Development using Phase Equilibria Computation and Microstructure Validation .. 3
A. Luo, R. Mishra, B. Powell, and A. Sachdev

Atoms-to-Grains Corrosion Modeling for Magnesium Alloys .. 5
S. Chaudhuri, J. Xiao, and H. Kwak

Solid State Joining of Magnesium to Steel ... 11
Y. Hovanski, M. Santella, S. Jana, H. Yu, D. Field, T. Pan, and S. Pilli

Grain Evolution during High Temperature Necking of Magnesium Alloys 17
P. Krajewski

Production of Wide Shear-Rolled Magnesium Sheet for Part Forming 23
D. Randman, B. Davis, M. Alderman, G. Muralidharan, T. Muth, T. Watkins, and W. Peter

Primary Production

Carbothermal Production of Magnesium: CSIRO’s MagSonic™ 8482: Process 31
L. Prentice, M. Nagle, T. Barton, S. Tassios, B. Kuan, P. Witt, and K. Constanti-Carey

MagSonic™ 8482: Carbothermal Technology Compared with the Electrolytic and Pidgeon Processes .. 37
L. Prentice, and N. Haque

Scaling-Up Solid Oxide Membrane Electrolysis Technology for Magnesium Production 43
S. Pati, A. Powell, S. Tucker, and S. Derezinski

Fluid Bed Dehydration of Magnesium Chloride ... 49
K. Adham, C. Lee, and K. O’Keefe

Demonstration of Solar-Pumped Laser-Induced Magnesium Production from Magnesium Oxide 55
Y. Takashi, O. Tomomasa, D. Thanh Hung, K. Hiroki, N. Junichi, and O. Kouta

Molten Salt Electrolysis of MgCl₂ in a Cell with Rapid Chlorine Removal Feature 59
G. Demirci, and I. Karakaya
Preparation of Aluminum-Magnesium Alloy from Magnesium Oxide in RECl₃-LiF-MgF₂ Electrolyte by Molten Salts Electrolysis Method ... 63

Experimental Study on Magnesium Extracted from Ascharite Mineral by Aluminium ... 67
 P. Jianping, W. Xiaolei, F. Naixiang, Z. Shigang, and D. Yuezhong

Electrochemical Investigation on Chlorine and Electrolyte Intercalation into Graphite Anodes during Magnesium Electrolysis Process .. 71
 B. Li, J. Lou, M. Yan, and J. Yu

Optimization of Preparation for MgO by Calcination from Basic Magnesium Carbonate using Response Surface Methodology .. 75
 B. Zhang, J. Feng, L. Zhang, and S. Ju

Deformation Mechanisms

An Elasto-Plastic Micromechanical Method for Twin Driven Plasticity .. 83
 L. Capolungo, P. Juan, and S. Berbenni

Anomalous Twin Bands in AZ31 Mg Sheet Bending .. 87
 J. Baird, B. Li, S. Yazdan Parast, S. Horstemeyer, H. El Kadiri, P. Wang, and M. Horstemeyer

Formation of Nano-Scale Twins and Low Angle Grain Boundaries during Fracture of Fine Grained Magnesium Alloys .. 93
 A. Singh, H. Somekawa, and T. Mukai

Tensile and Creep Deformation Mechanisms in Rolled AZ31 .. 99
 Z. Chen, C. Boehlert, I. Gutiérrez-Urrutia, J. Llorca, and M.T. Pérez-Prado

Structural Origin of Reversible Twinning, Non-Schmid Effect, Incoherent Twin Boundaries and Texture of Hexagonal Close-Packed Metals ... 105
 B. Li, X. Zhang, H. El Kadiri, S. Mathaudhu, and Q. Ma

Length Changes in Extruded Magnesium Alloy Bars Under Large Strain Free-End Torsion 111
 H. Wang, P. Wu, and K. Neale

Nano-Indentation Studies of Twinned Magnesium Single Crystals .. 117
 F. Hiura, R. Mishra, M. Lukitsch, and M. Niewczas

Non-Basal Textures in Magnesium Alloy Strips by Extrusion-Machining ... 121
 D. Sagapuram, M. Efê, W. Moscoso, S. Chandrasekar, and K. Trumble

The Elastic-Plastic Transition in Magnesium Alloys ... 127
 K. Yang, and C. Caceres

Casting and Solidification

Twin Roll Casting of Thin AZ31 Magnesium Alloy Strip with Uniform Microstructure and Chemistry 135
 I. Bayandorian, I. Stone, Y. Huang, and Z. Fan
Mathematical Modeling of the Twin Roll Casting Process for AZ31 Magnesium Alloy – Effect of Set-Back Distance 141

A. Hadadzadeh, M. Wells, and E. Essadiqi

Intermetallic Phase Formation and Growth in the Mg-Y System ... 145

K. Bermudez, S. Brennan, and Y. Sohn

Microstructure and Mechanical Properties of High Pressure Die Cast AM50 Magnesium Alloy Containing Ce 149

F. Mert, A. Özdemir, K. Kainer, and N. Hort

Melt Conditioned DC (MC-DC) Casting of Magnesium Alloys ... 155

Y. Zuo, Z. Fan, B. Jiang, and Y. Zhang

Effect of the Solidification Rate on Microstructure of Cast Mg Alloys at Low Superheat 161

G. Poole, N. Rimkus, A. Murphy, P. Boehmcke, and N. El-Kaddah

Impact and Energy Dissipation Characteristics of Squeeze and Die Cast Magnesium Alloy AM60 165

S. DiCecco, H. Hu, and W. Altenhof

Sliding Wear Behavior of Squeeze Cast Magnesium Composite AM60-9% (Al2O3) 169

A. Banerji, H. Hu, and A. Alpas

Solidification Studies of Mg-Al Binary Alloys ... 175

M. Paliwal, Y. Kang, E. Essadiqi, and I. Jung

Alloy and Microstructural Design

Age Hardening Behavior of Mg-1.2Sn-1.7Zn Alloy Containing Al .. 181

T. Sasaki, T. Ohkubo, and K. Hono

Effect of Nano-Alumina and Copper Micron Size Particulates on Microstructure and Mechanical Properties of Magnesium Alloy AZ31 ... 187

B. Nguyen, K. Tun, and M. Gupta

Evaluating the Effect of Pre-Ageing Deformation on β Precipitate Size and Distribution in Mg-Zn(-Y) Alloys ... 191

J. Rosalie, H. Somekawa, A. Singh, and T. Mukai

Effect of Zinc Content on the Microstructure and Mechanical Properties of Extruded Mg-Zn-Y-La Alloys with LPSO Phase .. 197

J. Kim, and Y. Kawamura

Effect of Ca Addition on the Microstructural and Mechanical Properties of AZ51/1.5 Al2O3 Magnesium Nanocomposite ... 201

M. Ershadul Alam, R. Ara Rima, A. Salem Hamouda, Q. Bau Nguyen, and M. Gupta

Effect of Zn Concentration and Grain Size on Prismatic Slip in Mg-Zn Binary Alloys 207

N. Stanford, and M. Barnett

Effects of Ca on Microstructure and Mechanical Properties of ZA62 Alloys .. 213

J. You, W. Zhang, K. Qiu, and Y. Ren

Mechanical Properties and High-temperature Oxidation Behavior of Mg-Al-Zn-Ca-Y Magnesium Alloys 217

Y. Kim, B. You, M. Shim, and N. Kim

vii
Effects of Si on Microstructure and Mechanical Properties of Mg-5Sn-2Sr Alloy ... 221
 J. You, S. Hao, K. Qiu, and Y. Ren

Corrosion and Coating

"Electroless" E-Coating for Mg Alloys ... 229
 G. Song

The Influence of Galvanic Current on Cerium-Based Conversion Coatings on Mg, Al, and Galvanized
Steel Couples .. 235
 S. Maddela, M. O'Keefe, and Y. Wang

Effect of Sn⁺⁺ Additives on the Microstructure and Corrosion Resistance of Anodic Coating Formed on AZ31
Magnesium Alloy in Alkaline Solution ... 241
 S. Salman, K. Kuroda, N. Saito, and M. Okido

Effect of Thickness on the Morphology and Corrosion Behavior of Cerium-Based Conversion Coatings on
AZ31B Magnesium Alloy ... 247
 C. Castano, S. Maddela, M. O'Keefe, and Y. Wang

Mechanical and Corrosion Properties of As-Cast and Extruded MG10GD Alloy for Biomedical Application........ 253
 P. Maier, S. Müller, H. Dieringa, and N. Hort

Corrosion Behavior of Various Steels by AZ31 Magnesium Melt ... 261
 C. Tang, M. Van Ende, and I. Jung

Corrosion of Ultrasonic Spot Welded Joints of Magnesium to Steel ... 265
 T. Pan, and M. Santella

Effect of Some Microstructural Parameters on the Corrosion Resistance of Magnesium Alloys 271
 Y. Hu, J. Kish, J. McDermid, and W. Zheng

Influence of Aluminum Content on Corrosion Resistance of Mg-Al Alloys Containing Copper and Zinc 277
 H. Kawabata, N. Nishino, Y. Genma, and T. Seguchi

High Temperature Processing and Properties

Effect of Rolling Temperature on the AZ31B Magnesium Alloy Microstructure ... 283
 L. Catorceno, and A. Padilha

Hot Formability Curves for Four AZ31B Magnesium Alloy Sheets Obtained by the Pneumatic Stretching Test.... 289
 F. Abu-Farha, R. Verma, and L. Hector

Texture Evolution during Hot Deformation Processing of Mg-3Sn-2Ca-0.4Al Alloy ... 295
 C. Dharmendra, K. Rao, Y. Prasad, N. Hort, and K. Kainer

The Effects of Strain and Stress State in Hot Forming of Mg AZ31 Sheet ... 301
 A. Carpenter, P. Sherek, L. Hector, P. Krajewski, J. Carter, E. Taleff, and J. Lasceski

Effect of Strain Rate on Dynamic Recrystallization in a Magnesium Alloy under Compression at
High Temperature .. 307
 Q. Ma, B. Li, A. Oppedal, W. Whittington, S. Horstemeyer, E. Marin, H. El Kadiri, P. Wang,
 and M. Horstemeyer

Effect of Strain Rate on the Kinetics of Hot Deformation of AZ31 with Different Initial Texture 311
 M. Sanjari, A. Farzadfar, A. Nabavi, E. Essadiqi, I. Jung, and S. Yue
Processing-Microstructure-Property Relationships I

Microstructure Modeling of Magnesium Alloys for Engineering Property Prediction ..335
 E. Barker, D. Li, X. Sun, and M. Khaleel

Microstructure Modification and Deformation Behavior of Fine-Grained AZ61 Sheet Produced by
Thixomolding and Thermomechanical Processing (TTMP) ...339
 T. Berman, W. Donlon, V. Miller, J. Huang, R. Decker, T. Pollock, and J. Jones

Development of High Strength and Toughness Magnesium Alloy by Grain Boundary Control345
 H. Somekawa, A. Singh, T. Inoue, and T. Mukai

Effects of Direct Extrusion Process on Microstructure, Texture Evolution and Yield Strength of Magnesium Alloy
AZ31 ..349
 S. Huang, M. Li, J. Allison, S. Zhang, D. Li, and Y. Peng

Comparison of Tensile Properties and Crystallographic Texture of Three Magnesium Alloy Sheets355
 J. Min, Y. Cao, J. Carter, and R. Verma

Strain Hardening of ZK60 Magnesium Alloys ...361
 J. Cho, S. Kang, and S. Han

Strain-Rate Effects of Sand-Cast and Die-Cast Magnesium Alloys under Compressive Loading365
 J. Weiler, and J. Wood

Mechanical Properties of Newly Developed Mg-Alloys AMX602 AND AZXE7111 under Quasi-Static and
Dynamic Loading ...371
 J. Shen, K. Kondoh, T. Jones, S. Mathaudhu, L. Kecskés, and Q. Wei

Phase Field Modeling of Beta1 Precipitation in WE54 Alloy ...377
 Y. Gao, H. Liu, R. Shi, Z. Xu, J. Nie, Y. Wang, and N. Zhou

Advanced Processing and Joining

Microstructure and Creep Properties of MEZ Magnesium Alloy Processed by Thixocasting385
 E. Morales Garza, H. Dieringa, N. Hort, and K. Kainer

The Effect of Friction Stir Processing on Microstructure and Tensile Behavior of Thixomolded AZ91
Magnesium Alloy ..391
 B. Mansoor, R. Decker, S. Kulkarni, S. LeBeau, and M. Khraisheh

Effect of Weld Structure on Fatigue Life of Friction Stir Spot Welding in Magnesium AZ31 Alloy397
 H. Rao, and J. Jordon

Effect of Corrosion on the Tensile Properties of Friction-Stir Welded AZ31B Sheet403
 J. Thuss, J. Kish, and J. McDermid
On the Effect of Ti₂AlC on the Formation of Thermally Stable Mg Nano Grains .. 409
B. Anasori, and M. Barsoum

Experimental Investigations into the Deformation Behavior of Thixo-Molded Mg AZ61L Sheet Alloy 413
M. Koc, O. Cora, R. Snell, R. Dekker, and J. Huang

Effects of High Temperature Shot Peening on Surface Characteristics and Fatigue Properties of Forged AZ31
Magnesium Alloys ... 419
Y. Ichihara, M. Noda, and K. Funami

Solid Solution Hardening Effect of Aluminum on the Creep Deformation of AZ91 Magnesium Alloy 423
F. Kabirian, and R. Mahmoudi

Processing-Microstructure-Property Relationships II

Enhancement of Strength and Ductility of Mg₉₆Zn₂Y₂ Rolled Sheet by Controlling Structure and
Plastic Deformation .. 429
M. Noda, Y. Kawamura, H. Sakurai, and K. Funami

Microstructural Characteristics of High Rate Plastic Deformation in Elektron WE43 Magnesium Alloys 433

Microstructure and Mechanical Properties of As-Extruded Mg-Sn-Al-Zn Alloys ... 439
S. Park, Y. Kim, C. Yim, H. Kim, and B. You

Tensile Properties of Three Preform-Annealed Magnesium Alloy Sheets ... 443
J. Min, J. Carter, and R. Verma

The Role of Intermetallics on Creep Behaviour of Extruded Magnesium Alloys .. 449
M. Fletcher, L. Bichler, and D. Sediako

High Performance Mg-System Alloys for Weight Saving Applications: First Year Results from the GREEN
METALLURGY EU Project ... 455
F. D’Errico, G. Garces Plaza, M. Hofer, and S. Kim

Effect of Extrusion Conditions on Microstructure and Texture of Mg-1% Mn and Mg-1% Mn-1.6% Sr Alloys 461
H. Borkar, and M. Pekguleryuz

Microstructural Characterization of Homogenised and Aged Mg-Gd-Nd Alloys .. 465
S. Khawaled, M. Bamberger, and A. Katsman

On the Deformed Microstructure of Rolled Mg-2.9Y ... 469
A. Farzadfar, M. Sanjari, I. Jung, E. Essadiqi, and S. Yue

Energy and Biomedical / Primary Production

In-Vitro Corrosion Studies of Bioabsorbable Magnesium Alloys ... 477
P. Gill, and N. Munroe

High-Capacity Hydrogen-Based Green-Energy Storage Solutions for the Grid Balancing 483
F. D’Errico, and A. Screnci

Reaction Sintering of Mg₂Si Thermoelectric Materials by Microwave Irradiation ... 489
S. Zhou, C. Bai, and C. Fu
Charge-Discharge Mechanism of MgC Powders and Mg-Li Alloy Thin Film Materials ... 493
 Y. Chen, F. Hung, T. Lui, R. Xiao, Y. Tseng, and C. Wang

Control of Yttrium Diffusion Out of Yttria Stabilized Zirconia During SOM Electrolysis for
Magnesium Production .. 499
 E. Gratz, S. Pati, J. Milshtein, A. Powell, and U. Pal

Study on the Thermodynamic and Experimental Carbothermic Reduction of Garnierite .. 505
 T. Qu, Y. Tian, B. Yang, B. Xu, D. Liu, and Y. Dai

Mechanism of Carbothermic Reduction of Magnesia and Reverse Reaction ... 511
 Y. Tian, T. Qu, B. Yang, H. Liu, C. Yang, and Y. Dai

Poster Session

Combination of Cooling Curve and Micro-Chemical Phase Analysis of Rapidly Quenched Magnesium
AM60B Alloy ... 519
 P. Marchwica, J. Sokolowski, A. Gesing, J. Jekl, C. Blawert, and R. Berkmortel

Effects of Friction Stir Process on the Tensile Properties of AZ61 Magnesium Alloy at Room Temperature
to 200°C ... 525
 H. Chen, T. Lui, L. Chen, and F. Hung

Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap through Combined Refining and
Solid Oxide Membrane (SOM) Electrolysis Processes ... 531
 X. Guan, P. Zink, and U. Pal

Microstructure and Mechanical Properties of Mg-5Sn-5Zn-xCa Alloys ... 537
 K. Qiu, B. Liu, J. You, and Y. Ren

Phase Dissolution of γ-Mg17Al12 during Homogenization of As-Cast AZ80 Magnesium Alloy and Its Effect
on Room Temperature Mechanical Properties ... 543
 R. Kulkarni, N. Prabhu, P. Hodgson, and B. Kashyap

Precipitation Formation and Grain Refinement of Mg-Al-Sn Alloy during Hot Deformation ... 549
 A. Kabir, J. Su, P. Vo, I. Jung, and S. Yue

The Effect of Precipitation on the Mechanical Properties of Extruded AZ80 ... 555
 R. Liu, J. Wang, and D. Yin

Influence of Section Thickness on Microstructure and Mechanical Properties of Squeeze Cast Magnesium
Alloy AM60 ... 561
 X. Zhang, M. Wang, Z. Sun, and H. Hu

Author Index .. 565

Subject Index ... 569
PREFACE

"The market for magnesium may be expected to develop along lines similar to those along which aluminum developed, but whether to anything like the same extent is entirely problematic. The market is somewhat unacquainted with many of the special qualities of the metal, and increased sales are largely a matter of education and research whereby a demand will be created and developed hand in hand with production. [...] The importance of a metal with properties similar to that of aluminum, but nearly half as light in these days of enormous automobile and aircraft expansion hardly needs much argument."

- 1919 United States Bureau of Mines Bulletin

In 1920, the television was not invented yet, and radio was king, with Louis Armstrong and Duke Ellington playing their legendary jazz in living rooms everywhere. The prohibition of alcohol began in the U.S.A. ushering in an era of organized crime (most famously, Al Capone) and of homemade whisky. The average daily wage for a male was US$5.00 per day; the average car cost US$265.00; a gallon of milk was US$.56, and a gallon of gas was US$.22. It was clearly a different time, but as this quote illustrates, some things are jarringly as valid today as they were 90 years ago. While the length of time since the bulletin may indicate the resilience of the Mg community, it also points to the fact that our mission is far from done; we must continue to support education and research for Mg and its alloys to reach their full potential.

It is this mission that supports the continued propagation of the Magnesium Technology Symposium, which is held yearly under the auspices of the TMS Light Metals Division’s Magnesium Committee at the TMS Annual Meeting and Exhibition. This year is the 13th edition of this meeting, and will be held in Orlando, FL (USA) from March 11-15, 2012. The symposium is arranged into an opening plenary session, a poster session, and a number of technical sessions which address the full scope of Mg research and development. These sessions include, deformation mechanisms, primary production, casting and solidification, alloy and microstructural design, corrosion and coating, high temperature processing and properties, processing-microstructure-property relationships, advanced processing and joining, and new applications in biomedical and energy.

This proceedings volume represents the proceedings of these symposia. They represent contributions from 19 countries spanning the globe. The largest contribution for the 2012 proceedings comes from the United States (30%), followed by Canada (19%), China (14%) and Japan (11%). All submissions were thoroughly peer-reviewed by volunteer referees acting on the behalf of the Magnesium Committee. These reviewers are critical to the success of this volume, and are commended in the following pages. Some of the symposium contributions related to Mg surface science will be published in an upcoming JOM special issue sponsored by the Magnesium Committee, titled “Magnesium: Engineering the Surface” in June 2012, and to be edited by Michele Manuel (University of Florida, USA), and Chamini Mendis (Helmholtz-Zentrum Geesthacht, Germany).
Additionally, a one-day, invited speaker mini-symposium will be held on the specific topic of "Phase Transformation and Deformation in Magnesium Alloys", and is organized by Jianfeng Nie (Monash University, Australia), Sean Agnew (University of Virginia, USA) and Suveen Mathaudhu (U.S. Army Research Office, USA). These sessions are co-sponsored by the TMS/ASM Phase Transformation Committee, and aim to examine the current understanding on phase transformations and roles of phase transformation products in controlling the deformation behavior of commercially and strategically important magnesium alloys, and to provide a platform for rational design of microstructures for better mechanical properties and formability. The submissions to this mini-symposium will be published in a forthcoming Special Issue of *Metallurgical and Materials Transactions A*.

Lastly, the organizing of these proceedings would not have been possible without the dedication and assistance of TMS staff. In particular, we would like to recognize Ms. Chris Wood for her tireless patience and hard work.

Over the past 12 years, the Magnesium Technology Proceedings, through its high quality technical content, has become the primary proceedings for the magnesium industry and technical community. We would hope that this year’s volume will serve you just as well.

Suveen N. Mathaudhu (U.S. Army Research Office, USA)
Wim H. Sillekens (TNO, Netherlands)
Neale R. Neelamegham (IND LLC, USA)
Norbert Hort (Helmholtz-Zentrum Geesthacht, Germany)
Suveen Nigel Mathaudhu (1975) serves as the Program Manager for Synthesis and Processing of Materials with the U.S. Army Research Office (ARO), Materials Science Division. He received his B.S.E. in Mechanical Engineering from Walla Walla University in 1998, and Ph.D. in Mechanical Engineering from Texas A&M University in 2006. In his current position, he manages programs which focus on the use of innovative approaches for processing high performance structural materials reliably and at lower costs. He also concurrently serves as an Adjunct Assistant Professor in the Department of Materials Science and Engineering at North Carolina State University, where his research interests include: ultrafine-grained and nanostructured materials by severe plastic deformation, consolidation of metastable particulate materials and processing-microstructure-property relationships of refractory metals and lightweight metals, and thermally stable nanocrystalline materials. He has co-authored over 50 technical publications in these areas.
ABOUT THE ORGANIZERS

Wim H. Sillekens (1963) is a Senior Scientist at the Netherlands Organization for Applied Scientific Research (TNO), where he is involved in national and European research projects. He obtained his Ph.D. from Eindhoven University of Technology, Netherlands, on a subject relating to metal-forming technology. Since he has been engaged in light-metals research (aluminum and magnesium), amongst others on (hydro-mechanical) forming, (hydrostatic) extrusion, forging, recycling/refining, and more recently on biomedical applications. His professional career includes positions as post-doc researcher at his alma mater and as a research scientist / project leader at TNO. International working experience covers a placement as a research fellow at the Mechanical Engineering Laboratory (AIST-MITI) in Tsukuba, Japan, and – more recently – shorter stays as a visiting scientist at GKSS in Geesthacht, Germany, and at PNNL in Richland WA, USA. He has co-authored a variety of journal and conference papers (about 50 entries to date). Current research interests are in the physical and mechanical metallurgy of light metals in general and magnesium wrought alloys in particular.

Neale R. Neelameggham is ‘Guru’ at IND LLC, involved in Technology marketing and consulting in the field of light metals and associated chemicals [boron, magnesium, titanium, lithium and alkali metals], rare earth elements, battery and energy technologies, etc. He has over 38 years of expertise in magnesium production technology from the Great Salt Lake brine in Utah, involved in Process Development of its startup company NL magnesium through the presently known US Magnesium LLC, and was its Technical Development Scientist from where he retired. Dr. Neelameggham’s expertise includes all aspects of the magnesium process, from solar ponds through the cast house including solvent extraction, spray drying, molten salt chlorination, electrolytic cell and furnace designs, lithium ion battery chemicals and by-product chemical processing. In addition, he has an in-depth and detailed knowledge of alloy development as well as all competing technologies of magnesium production, both electrolytic and thermal processes worldwide. Dr. Neelameggham holds 13 patents and a pending patent on Boron Production, and has several technical papers to his credit.

As a member of TMS, AIChE, and a former member of American Ceramics Society he is well versed in energy engineering, bio-fuels, rare-earth minerals and metal processing and related processes. Dr. Neelameggham has served in the Magnesium Committee of LMD since its inception in 2000, chaired it in 2005, and has been a co-organizer of the Magnesium Symposium since 2004. In 2007 he was made a Permanent Co-organizer for the Magnesium Symposium. He has been a member of the Reactive Metals Committee, Recycling Committee and Programming
Committee Representative of LMD. In 2008, LMD and EPD created the Energy Committee following the symposium on CO$_2$ Reduction Metallurgy Symposium initiated by him. Dr. Neelameggham was selected as the inaugural Chair for the Energy Committee with a two-year term. He was a member of LMD council. He received the LMD Distinguished Service Award in 2010. He has been a co-editor of the Energy Technology symposium. Dr. Neelameggham holds a doctorate in extractive metallurgy from the University of Utah.

Norbert Hort (1964) is the head of the Magnesium Processing Department at the Magnesium Innovation Centre (MagIC) within the Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung, Geesthacht, Germany (formerly the GKSS Research Centre). Concurrently he is lecturer at the Leuphana University, Lüneburg, Germany. He studied Materials Sciences at the Clausthal University of Technology (CUT), Germany, where he already got involved in magnesium research since the early 1990ties. His diploma thesis (1994) was dealing with gas atomized, hot extruded magnesium alloys. During 1994-95 he worked as a researcher at the Institute of Materials Sciences (CUT) and he joined the HZG in 2000. He got his PhD degree in Materials Sciences in 2002 from the Clausthal University of Technology. In the MagIC he is responsible for the development of new creep resistant magnesium alloys, grain refinement and the castability of magnesium alloys (viscosity and density of melts, fluidity, and mould filling). A major focus of his research is additionally the development of new magnesium alloys for biodegradable implants in a close collaboration with biologists and clinicians. He is co-author of more than 60/120 peer reviewed journal papers and contributions to conference proceedings. In recent years he was involved in the organizing committees of the conference series “Magnesium Alloys and their Applications” and of the conference “Light Metal Technologies 2011”. Since 2009 he is also the chairman of the technical committee “Magnesium” of the German Society of Materials (DGM).
TMS Magnesium Technology 2012 – Session Chairs (*provisional*)

Plenary Session – Monday AM
- Suveen N. Mathaudhu (US Army Research Office, USA)
- Wim Sillekens (TNO, Netherlands)
- Norbert Hort (Helmholtz-Zentrum Geesthacht, Germany)

Primary Production – Monday PM
- Neale Neelameggham (IND LLC, USA)
- Adam Powell (Metal Oxygen Separation Technologies Inc., USA)

Deformation Mechanisms – Monday PM
- Bin Li (Mississippi State University, USA)
- Alok Singh (National Institute of Materials Science, Japan)

Casting and Solidification – Wednesday AM
- Norbert Hort (Helmholtz-Zentrum Geesthacht, Germany)
- Yongho Sohn (University of Central Florida, USA)

Alloy and Microstructural Design – Wednesday AM
- Jian-Feng Nie (Monash University, Australia)
- Nack Kim (POSTECH, South Korea)

Corrosion and Coating – Wednesday PM
- Guang-Ling Song (General Motors, USA)
- Michele Manuel (University of Florida, USA)

High Temperature Processing and Properties – Wednesday PM
- Paul E. Krajewski (General Motors, USA)
- Warren Poole (University of British Columbia, Canada)

Processing-Microstructure-Properties I – Thursday AM
- Hidetoshi Somekawa (National Institute of Materials Science, Japan)
- Kyu Cho (U.S. Army Research Laboratory, USA)

Advanced Processing and Joining – Thursday AM
- Tyrone Jones (U.S. Army Research Laboratory, USA)
- Brian Jordan (University of Alabama, USA)

Processing-Microstructure-Properties II – Thursday PM
- Alan Luo (General Motors, USA)
- Fabrizio D’Errico (Politecnico di Milano, Italy)
Energy and Biomedical / Primary Production – Thursday PM
- Wim Sillekens (TNO, Netherlands)
- Neale Neelameggham (IND LLC, USA)

Poster Session
- Eric A. Nyberg (Pacific Northwest National Laboratory, USA)